6.6.1. Обобщенное защитное устройство и методы защиты :: vuzlib.su

6.6.1. Обобщенное защитное устройство и методы защиты :: vuzlib.su

14
0

ТЕКСТЫ КНИГ ПРИНАДЛЕЖАТ ИХ АВТОРАМ И РАЗМЕЩЕНЫ ДЛЯ ОЗНАКОМЛЕНИЯ


6.6.1. Обобщенное защитное устройство и методы защиты

.

6.6.1. Обобщенное защитное
устройство и методы защиты

При решении задач защиты выделяют
источник, приемник энергии и защитное устройство, которое уменьшает до допустимых
уровней поток энергии к приемнику [6.10].

В общем случае защитное устройство
(ЗУ) обладает способностями: отражать, поглощать, быть прозрачным по отношению
к потоку энергии. Пусть из общего потока энергии W+, поступающего к ЗУ (рис.
6.26), часть Wα, поглощается, часть W отражается и часть W– проходит
сквозь ЗУ. Тогда ЗУ можно охарактеризовать следующими энергетическими
коэффициентами: коэффициентом поглощения τ= WαW+, коэффициентом
отражения d = a/W+, коэффициентом передачи τ = W/W. Очевидно, что
выполняется равенство р + а + т = 1. Сумма α+τ=1– p=v (где v = W^W^)
характеризует неотраженный поток энергии W, прошедший в ЗУ. Если α = 1, то
ЗУ поглощает всю энергию, поступающую от источника, при р = 1 ЗУ обладает 100
%-ной отражающей способностью, а равенство τ = 1 означает абсолютную прозрачность
ЗУ: энергия проходит через устройство без потерь.

Рис. 6.26. Энергетический баланс
защитного устройства

В соответствии с изложенным можно
выделить следующие принципы защиты:

1) принцип, при котором р→ 1;
защита осуществляется за счет отражательной способности ЗУ;

2) принцип, при котором  α→1;
защита осуществляется за счет поглощательной способности ЗУ;

3) принцип, при котором τ→
1; защита осуществляется с учетом свойств прозрачности ЗУ.

На практике принципы обычно
комбинируют, получая различные методы защиты. Наибольшее распространение получили
методы защиты изоляцией и поглощением.

Методы изоляции используют тогда,
когда источник и приемник энергии, являющийся одновременно объектом защиты,
располагаются с разных сторон от ЗУ. В основе этих методов лежит уменьшение
прозрачности среды между источником и приемником, т. е. выполнение условия
τ→ 0. При этом можно выделить два основных метода изоляции: метод,
при котором уменьшение прозрачности среды достигается за счет поглощения
энергии ЗУ [т. е. условие τ→0 обеспечивается условием α→
1 (рис. 6.27, а), и метод, при котором уменьшение прозрачности среды
достигается за счет высокой отражательной способности ЗУ [т. е. условие τ→
0 обеспечивается условием р → 1 (рис.6.27,б ).

В основе методов поглощения лежит
принцип увеличения потока энергии, прошедшего в ЗУ, т. е достижение условия v
-> I. Принципиально можно различать как бы два вида поглощения энергии ЗУ:
поглощение энергии самим ЗУ за счет ее отбора от источника в той или иной
форме, в том числе в виде необратимых потерь (характеризуется коэффициентом
α, рис. 6.28, а) и поглощение энергии в связи с большой прозрачностью ЗУ
(характеризуется коэффициентом τ, рис.6.28. б). Так как при v → 1
коэффициент р → 0, то методы поглощения используют для уменьшения
отраженного потока энергии; при этом источник и приемник энергии обычно
находятся с одной стороны от ЗУ.

Рис. 6. 27. Методы изоляции при
расположении источника и приемника с разных сторон от ЗУ; а –энергия поглощается;
б–энергия отражается

Рис. 6.28. Методы поглощения при
расположении источника и приемника с одной стороны от ЗУ:

а – энергия отбирается; б – энергия
пропускается •

При рассмотрении колебаний наряду с
коэффициентом α часто используют коэффициент потерь η, который
характеризует количество энергии, рассеянной ЗУ:

η=
Ws/ωε=εs/2πε, (6.8)

где W и εу – средние за период
колебаний Г, соответственно, мощность потерь и рассеянная за то же время энергия;ω–круговая
частота, ω= 2π/Т,ε–энергия, запасенная системой.

В большинстве случаев качественная
оценка степени реализации целей защиты может осуществляться двумя способами:

1) определяют коэффициент защиты kw
виде отношения:

kв=  поток энергии в данной точке
при отсутствии ЗУ .

      поток энергии в данной точке
при наличии ЗУ ‘

2) определяют коэффициент защиты в
виде отношения:

Эффективность защиты (дБ)

e=10lgkв. (6.9)

.

Назад

НЕТ КОММЕНТАРИЕВ

ОСТАВЬТЕ ОТВЕТ